Synthesis of the 450GX PentiumPro chipset into FPGAs
(ECE572 HW6)
Steen Larsen (11-19-2003)
Steen.Larsen@intel.com
Abstract: As the first step to implement a memory compression algorithm, a chipset needs to be synthesized to a target that easily allows compression algorithms added. The existing 450GX chipset is an NEC ASIC, so targeting a general purpose FPGA such as Altera or Xilinx would allow quick design iterations as different compression methods are tested.
Introduction

There is an increasing bottleneck between the processor and the main memory that is needed to continue program execution due to cache misses. This information can be split into three different types: Instruction data contains the future code instructions for the program to continue processing. Address information holds the virtual memory address locations of jump conditions and other memory addresses. General data information holds operands of the program that need to be read or written to main memory. This bottleneck is a result of increasing silicon speeds allowing processors to be faster by many multiples the circuit board speed. Although overall memory bandwidth has been increasing, processor demands have been outstripping ability to provide required information.

General trends in the industry can be seen as parallel circuit board traces are replaced high speed serial networks that can easily switch packetized protocols. For multimode networks this makes sense, but for the predominate computer industry, there is a single path between processor and main memory. This is growing computation/memory gap is well known [1], simply increasing the parallel connection higher raw bandwidth can be achieved, but the variance within software execution does not allow full use of this higher bandwidth.
Background

Various simulations have been accomplished illustrating the compressibility of these three different types of information. They illustrate that typical processor-memory transactions are by nature highly compressible by using such measures as zeroth order Markov entropy and first order Markov entropy. These measurements help illustrate the maximum compressibility available on a given set of symbols. [2], [3], [4], [5], [6]
IBM has implemented a method of compressing instructions upon compiling code for the PowerPC, [7], [8] where the instructions are compressed to variable length codes with lookup tables that allow the memory controller to fetch a full block with indexes, decode instructions for the block and provide in full length to the PowerPC. The algorithm uses a simple key to determine how long the variable length of the instruction is. This variable length code is then looked up in a reference table of commonly used instructions. For instance a 7 bit code field would result in a full 32 bit decoded instruction for the processor. Compression of code results in sizes that are 35-40% smaller than original. Figure 1 shows the IBM implementation for instruction code compression. [7]

[image: image1.png]Extomal bemory

Hemory
Contraller

Pracessor
Local Bus

Figure 1. An integrated design including the CodePack decompression core

This implementation is very useful in an embedded software environment where often the instruction code is separated physically from main memory in a non-volatile device such as FLASH. If speed is essential, the decoded instructions can be shadowed into larger RAMs, but the smaller (less expensive) non-volatile devices can still be used.

IBM has also introduced MXT technology [11] [12] [13] [14] [15] which is available on Intel processors for memory compression. This has not achieved widespread acceptance, so learnings from this implementation can be studied and improved. Preliminary results show the compression structure can accommodate between 1:1 to a maximum 64:1 compression ratio with most common applications showing a 2:1 compression ratio. Overall performance improves in some cases where conventional memory configurations are executing tasks that swap to disks by 2X. IBM quotes “MXT provides a system cost leverage not seen since the invention of DRAM” [11]
A main detraction of MXT is that the implementation uses about 1 million additional gates. This is acceptable in a server environment, but does not justify the cost to implement a change in the current mass market. I hope to implement a potentially simpler and less complex scheme that may help drive a change in the mass market if implemented across many PC chipsets.

In order to do proper studies, and improve upon the previous methods, a reliable platform to test different compression methods needs to be constructed. Since there are still unknowns in how long this will take, how much logic in an FPGA, how many errata will affect the processor/memory interface, and how much debug this will take, focus needs to be placed on synthesizing and implementing a standard platform with the FPGA chipset.
Implementation
To illustrate different compression algorithms realistically, simulations need to give way to running software in real time. By using an existing architecture (Intel PentiumPro server), the chipset interfacing processor to memory can be replaced with an FPGA that allows different compression algorithms to be implemented. The 450GX chipset is used.[9], [10] The proprietary Intel front-side bus interface and memory control chip (453GX DC) and the data path interface (452GX DP) chip are synthesized into Altera FPGAs. These FPGAs are then connected to existing platforms which have the 453GX and 452DP removed. This allows the FPGA to interface between main memory and the processor(s).

Results

As a new synthesis into an FPGA, the 165,880 lines of VHDL source code could hold many problems. Targeting first the simpler datapath chip, ~33,000 lines of code were successfully synthesized early November 2003. The main difficulties were porting the NEC primitives into Altera FPGA primitives (xor trees, D-flipflops, tristate drivers, etc) and porting the dual-port RAM buffer in an Altera FPGA memory array.
For example the xor tree (xr_26) used to generate ECC was defined as follows:
 I1 : F516 port map(N01 => n101, H01 => LD2_1, H02 => LD3_1, H03 => LD1_1);

 I2 : F516 port map(N01 => n102, H01 => LD2_2, H02 => LD3_2, H03 => LD1_2);

 I3 : F516 port map(N01 => n103, H01 => LD2_3, H02 => LD3_3, H03 => LD1_3);

 I4 : F516 port map(N01 => n104, H01 => LD2_4, H02 => LD3_4, H03 => LD1_4);

 I5 : F516 port map(N01 => n105, H01 => LD2_5, H02 => LD3_5, H03 => LD1_5);

 I6 : F516 port map(N01 => n106, H01 => LD2_6, H02 => LD3_6, H03 => LD1_6);

 I7 : F516 port map(N01 => n107, H01 => LD2_7, H02 => LD3_7, H03 => LD1_7);

 I8 : F516 port map(N01 => n108, H01 => LD2_8, H02 => LD3_8, H03 => LD1_8);

 I9 : F511 port map(N01 => n109, H01 => LD2_9, H02 => LD1_9);

 I10 : F516 port map(N01 => n201, H01 => n101, H02 => n102, H03 => n103);

 I11 : F516 port map(N01 => n202, H01 => n104, H02 => n105, H03 => n106);

 I12 : F516 port map(N01 => n203, H01 => n107, H02 => n109, H03 => n108);

 I13 : F516 port map(N01 => Sout, H01 => n201, H02 => n202, H03 => n203);

Since F516 can be deduced to be a 3-input XOR gate, the resulting architecture using general IEEE library functions and not NEC ASIC library calls:

Sout <= (LD1_1 XOR LD1_2 XOR LD1_3 XOR LD1_4 XOR LD1_5 XOR LD1_6 XOR LD1_7 XOR LD1_8 XOR LD1_9 XOR LD2_1 XOR LD2_2 XOR LD2_3 XOR LD2_4 XOR LD2_5 XOR LD2_6 XOR LD2_7 XOR LD2_8 XOR LD2_9 XORLD3_1 XOR LD3_2 XOR LD3_3 XOR LD3_4 XOR LD3_5 XOR LD3_6 XOR LD3_7 XOR LD3_8) ;
By modifying the library, future calls to the xr_26 component synthesize. Although xr_26 is not the primitive, I found it easier to go through the library orion_asic_1_cells_pkg.vhd and modify to be general logic than generate an entirely new library that instantiated such primitives as F516. I also did not want to inherit unnecessary levels of reference which could possibly affect the technology mapping section of synthesis.
A lot of time was also spent configuring the files and locations to be accessible by the Altera native synthesizer (Quartus version 3.0) Overall, the VHDL logic was well written, and with the exception of multiple WAIT statements in a process, the code synthesized in under three minutes into 1,613 Altera logic elements (roughly 50,000 gates). 2K bits of embedded RAM was used for the dual port buffer and can easily be adjusted to try different buffer sizes to measure performance improvements on larger buffer sizes. 176 IO pins are consumed due to the 64 data lines on the processor bus and the 72 (includes ECC) signals on the memory side. Timing results show a worst case propagation delay of 10.4ns and a worst case global clock setup time requirement of 7ns (or 141MHz). This means the chip itself is capable of running much faster than the target motherboard rate of 66MHz. Due to the FPGA interconnect circuitry; the 66MHz will probably still have to be slowed down. This will basically constitute of an external function generator supplying a slower clock frequency to an on-board master clock synthesizer.
Synthesis of the 453GX memory control chip was finished based on the

Synthesis of the 453GX memory control chip is underway. Some primitives still need translation, and in the form of the rambit primitive a specific process needed to be generated to make the one-bit latch. Simply based on the line count of source code, the logic complexity is 5-10 times as complex as the datapath chip described above. This is because of the complex pipelining of the PentiumPro frontside bus that has different stages for each transaction.
At the current rate of progress, the memory control chips should finish synthesis by end of November and time should be available to port to a Xilinx FPGA to get rough estimates on how Altera and Xilinx logic elements compete as well as timing estimates. This will benefit the class project in that different synthesis tools and different logic element structure can be compared and contrasted. Since Altera and Xilinx FPGA constitute about 80% of the marketshare, there are similarities of VHDL file structures that allow hopefully a quick port.
Beyond this 2003 end of year, the current plan is as follows:
Winter 2004 – Design and fabricate FPGA interface circuit board
Spring 2004 – Connect circuit board to PentiumPro server and attempt to boot various operating systems (Windows/Linux/DOS) allowing more advanced testing to be done. This will involve logic analyzer probing as well as simulations to debug.

Summer 2004 – Code and implement different compression algorithms and test.

Fall 2004 – Writeup results and possibly publish.

References

[1] J.L. Hennessey and D.A. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kaufmann Publishers Inc., 1996

[2] Mahapatra, Liu, Sundaresan. The Performance Advantage of Applying Compression to the Memory System. ACM 1-58113-478-9/02/0006, June 2002
[3] Mahapatra, Liu, Sundaresan, Dangeti, Venkatrao. The Potential of Compression to Improve Memory System Performance, Power Consumption and Cost. IEEE 2003 0-7803-7893-8/03

[4] Sundaresan, Mahapatra. Code Compression Techniques for Embedded System and Their Effectiveness. Proceedings of the IEEE Computer Society Annual Symposium on VLSI 0-7695-1904-0/03, 2003
[5] Liu, Mahapatra, Sundaresan. Hardware-Only Compression to Reduce Cost and Improve Utilization of Address Buses. Proceedings of the IEEE Computer Society Annual Symposium on VLSI 0-7695-1904-0/03, 2003

[6] Liu, Mahapatra, Sundaresan, Dangeti, Venkatrao. Memory System Compression and its Benefits. IEEE 2002 0-7803-7494-0/02

[7] Game and Booker. CodePack: Code Compression for PowerPC Processors Rev1.0. http://www-3.ibm.com/chips/techlib/techlib.nsf/products/CodePack
[8] IBM. CodePack PowerPC Code Compression Utility User’s Manual Rev4.1. http://www-3.ibm.com/chips/techlib/techlib.nsf/products/CodePack March 2001

[9] Intel. Intel 450KX/GX Chipset. Intel webpage www.developer.intel.com. 1996

[10] Tom Shanley. Pentium Pro Processor System Architecture. Mindshare Inc 0-201-47953-2 1997
[11] Tremaine, Franaszek, Robinson, Schulz, Smith, Wazlowski. IBM Memory eXpansion Technology (MXT) IBM Journal of Research and Development http://researchweb.watson.ibm.com/journal/rd45-2.html 2001
[12] Smith, Abali, Poff, Tremaine. MXT Competitive Impact IBM Journal of Research and Development http://researchweb.watson.ibm.com/journal/rd45-2.html 2001
[13] Franaszek et.al. Algorithms and Data Structures for Compressed-memory Machines IBM Journal of Research and Development http://researchweb.watson.ibm.com/journal/rd45-2.html 2001
[14] Franaszek, Robinson. On Internal Organization in Compressed Random Access Memories IBM Journal of Research and Development http://researchweb.watson.ibm.com/journal/rd45-2.html 2001
[15] Abali et.al. MXT Software Support and Performance IBM Journal of Research and Development http://researchweb.watson.ibm.com/journal/rd45-2.html 2001
