
Lab 3 PLD state machine

EET 207

Repeat lab 2 but use VHDL to target the Altera MAX 3128 PLD.

Download from

https://www.altera.com/support/software/download/sof-download_center.html

the Quartus II free web edition. (This is 227MB so a broadband connection is
needed. If you do not have one, the instructor can provide a CD in the lab)
Quartus II allows you to synthesize VHDL to target the MAX 3128 PLD as
well as a logic simulator. Please include logic simulation in your lab report.
This “free” software requires a license registration of your NIC. The
installation walks you through the process to get the license.

The PLD board is available from the lab instructor. Please contact him to get
this board if you are not going to be in the lab session. There is a parallel port
cable that goes with this circuit board. If you do not have your own PC to use,
you can use one of the lab computers.

As can be seen from the silkscreen on the boards, pins 24, 25, 27, 28 are
switches 1,2,3,4 respectively. The LEDs can be controlled by segments
A,B,C,D,E,F,G on pins 70, 71,72,75,76,77, 80. The board has a 32MHz clock
coming in on pin 87.

With your VHDL file, a completed synthesis and place/route would result in a
screenshot as shown below:

Another sample design using this board is located on webct. It is a simple
clock divider, but gives a sample complete design and a waveform stimulus.

A sample VHDL state machine is listed below and can be modified to realize
the car buzzer state machine you did in lab 2. Replace or delete each text string
noted with “__xxxxx” Email me with questions you have on text formatting.

--EET207 Example VHDL file
-- Your name and date

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
use IEEE.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;
LIBRARY lpm; --Allows use of all Altera LPM
USE lpm.lpm_components.all; --function

ENTITY __machine_name IS
 PORT(
 clk : IN STD_LOGIC;
 reset : IN STD_LOGIC;
 __input_name, __input_name : IN STD_LOGIC;
 __output_name, __output_name : OUT STD_LOGIC);
END __machine_name;

ARCHITECTURE a OF __machine_name IS
 TYPE STATE_TYPE IS (__state_name, __state_name, __state_name);
 SIGNAL state: STATE_TYPE;
BEGIN
 PROCESS (clk)
 BEGIN
 IF reset = '1' THEN
 state <= _state_name;
 ELSIF clk'EVENT AND clk = '1' THEN
 CASE state IS
 WHEN __state_name =>
 IF __condition THEN
 state <= __state_name;
 END IF;

 WHEN __state_name =>
 IF __condition THEN
 state <= __state_name;
 END IF;

 WHEN __state_name =>
 IF __condition THEN
 state <= __state_name;
 END IF;

 END CASE;
 END IF;
 END PROCESS;

 WITH state SELECT
 __output_name <= __output_value WHEN __state_name,
 __output_value WHEN __state_name,
 __output_value WHEN __state_name;
END a;

